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Abstract
Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been

recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim

was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis

and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for

three weeks with BPA 1nM to mimic human environmental exposure. We evaluated BPA

effect on cell proliferation, differentiation, gene expression and adipocyte metabolic func-

tion. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes

differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated

receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2)

and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds,

respectively. Mature adipocytes also showed a significant increase in lipid accumulation

(p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glu-

cose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleu-

kin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA

prolonged exposure at low doses, consistent with those found in the environment, may

affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and antici-

pating the expression of the master genes involved in lipid/glucose metabolism. The result-

ing adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization

and increased pro-inflammatory cytokine expression. Thus, these data supported the

hypothesis that BPA exposure, during critical stages of adipose tissue development, may

cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of

developing obesity-related diseases.
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1. Introduction
Obesity is a significant public health problem in the developed world, caused by complex inter-
actions among genetic, behavioral and environmental factors [1]. Obesity is characterized by
increased fat cell size (hypertrophic obesity) or cell number (hyperplasic obesity), often related
to high caloric diet [2]. In the last few years, a role of environmental chemicals in promoting
obesity has been suggested, with adverse effects on human health through adipose tissue dys-
function [3,4]. Among these chemical substances, endocrine disrupting compounds (EDCs)
have a crucial role in mimicking hormonal activities, in promoting adipogenesis and in devel-
opment of obesity and diabetes [3,5,6]. In particular, bisphenol-A (BPA), a xeno-estrogen
plastic component, can be considered a “bona fide” adipogenic candidate, for its worldwide dis-
tribution and the capability to accumulate into and to affect adipose tissue [7–9].

Although BPA has short half-life, humans are chronically exposed to low doses of the com-
pound, mainly through modern fast-food/processed/packaged food diet, dust and thermal
paper. Indeed, BPA is able to leach from food and beverage containers upon heating or follow-
ing pH changes [8,10]. Free and conjugated BPA are therefore measurable in human body flu-
ids, such as blood, urine, saliva, amniotic fluid and breast milk [10,11].

Interestingly, in humans, BPA crosses the placenta, it is partially inactivated in fetal liver by
uridine 5'-diphospho-glucuronosyl-transferase (UDP-UGT) enzyme and it accumulates in
amniotic fluid and in adipose tissue, mainly as free form [12]. Considering that the embryonic
and fetal life are periods of rapid cell division and epigenetic remodeling, BPA exposure in
these critical windows can lead to permanent changes, by developmental “programming”met-
abolic dysfunctions later on in the lifespan, and contributing to insulin resistance and diabetes
[13]. In animal studies, BPA, at concentrations within the human exposure range, may cause
disruption of pancreatic beta-cell and anti-androgen effects with male infertility. In addition,
for its interference on thyroid hormone receptor (TR), it may affect brain morphology and
expression of genes related to brain development [7,10,14,15]. The impact of BPA on human
health has been suspected in epidemiological and cross-sectional studies. Although these evi-
dences are still controversial, a potential relationship between concurrent urinary/plasma BPA
levels and obesity or obesity-related disorders was suggested [6,8,11,16,17].

Furthermore, BPA metabolic and inflammatory effects have also been evidenced in vitro on
human and murine adipocytes, with decreased insulin action and increased pro-inflammatory
cytokine secretion [9,18].

Thus, the possibility that BPA may affect adipose tissue function, contributing to the devel-
opment of systemic low-grade inflammation, insulin resistance and metabolic syndrome,
together with other environmental factors, such as high-fat/high calories diets, is to be highly
considered [18–20]. However, the mechanisms by which BPA can interfere on adipocyte matu-
ration and metabolic functions have been only partially elucidated.

Aim of this study was to investigate chronic BPA effect on adipogenesis, in term of master
gene expression and on mature adipocyte function. For this purpose, in these experiments we
used 3T3-L1 pre-adipocytes, a well established cell model of adipocyte differentiation.

2. Materials and Methods

2.1. Materials
BPA was dissolved in ethanol and was a generous gift of Prof. C. Crescenzi (Department of
Pharmaceutical and Biomedical Science, University of Salerno, Fisciano- SA, Italy. For western
blot analysis, antibodies against phospho-Ser473 Protein Kinase B (pPKB/AKT1), total PKB/
AKT, total Extracellular Signal-Regulated Kinase (ERK1), Peroxisome proliferator-activated
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receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte protein 2 (FABP4/AP2)
and 14-3-3 were purchased by Santa Cruz Biotechnology, Inc. (CA, USA). Antibody against
Phospho-ERK1 (pERK1) was from Cell Signaling Technology, Inc. (Danvers, MA, USA) and
antibody anti-Glucose transporter type 4 (GLUT-4) was from Abcam, Cambridge Science
Park, Cambridge (CB4 0FW, UK). Horseradish peroxidase-conjugated secondary antibody at
different concentrations was used.

All the other chemicals were from Sigma-Aldrich (St. Louis, USA, MO). Media and antibiot-
ics for cell culture were from Lonza (Lonza Group Ltd, Basel, Switzerland), sera from Gibco
(Gibco, CA, USA, 16010–159).

2.2. Cell culture, growth and differentiation
3T3-L1 mouse fibroblasts (ATCC CL-173) were available in host laboratory. 3T3-L1 were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% calf serum
(CS) and 2% glutamine, 100 IU/ml penicillin and 100 IU/ml streptomycin. Cultures were
maintained in humidified atmosphere of 95% air and 5% CO2 at 37°C. 3T3-L1 pre-adipocytes
were treated with 1nM of BPA for three weeks before adipogenesis started and throughout the
differentiation. Adipogenesis was performed as previously reported [21–24]. In brief, to verify
the BPA effect on adipogenesis, 3T3-L1 pre-adipocytes were treated with BPA 1nM for two
weeks. Next, at day 15 (the end of second week), they were seeded for cell growth determina-
tion in 6-well culture plates in complete medium [25] and counted after 24 (day 16), 48 (day
17) and 72 hours (days 18), using Burker chamber, according to the manufacturer’s instruc-
tion. To achieve adipocyte differentiation, the same number of cells were left to reach the con-
fluence (day -2). Thereafter, untreated and BPA pre-treated murine fibroblasts were incubated
with the first differentiation mix (DMEM 10% fetal bovine serum -FBS), containing insulin
174nM, dexamethasone 10mM and 3-isobutyl-1-methylxanthine 0.5mM for starting adipo-
genesis (day 0). Where indicated, BPA was included in the mix. Cells were collected and ana-
lyzed at days -2, 0, 4 and 8 during differentiation. In particular, at day 2 of adipogenesis the
medium was replaced with the second differentiation mix (DMEM 10% FBS containing only
insulin 174nM). Then, media were changed every two days (DMEM 10% FBS without insulin)
[21, 26–29] until the mature adipocytes were obtained (day 8). All these mix changes were
done in parallel in control cells without BPA.

2.3. Gene expression analysis using Real-time RT-PCR
To evaluate BPA effect on adipose tissue differentiation and function, mRNA expression of key
adipogenic markers, transcription factors and cytokine production were assayed using Real-
time RT-PCR. Total RNA was isolated from 3T3-L1 cells by using the Rneasy Kit (Qiagen,
Valencia, CA, USA) according to the manufacturer's instruction and 1μg RNA was reverse-
transcribed using SuperScript III Reverse Transcriptase (Life Technologies, Carlsbad, CA,
USA). Quantitative real-time RT-PCR was performed with SYBR Green mix (Bio-Rad, Hercu-
les, CA, USA) using an iCycler IQ multicolor Real-Time PCR Detection System (Bio-Rad, Her-
cules, CA, USA). All reactions were performed in triplicate and β-actin was used as an internal
standard.

All primer sequences used were described in Table 1.

2.4. Cell lysates and immunoblot procedure
Total cell lysates were obtained and separated by SDS-PAGE. Briefly, cells were solubilized for
20 min at 4 C with lysis buffer containing 50 mMHEPES, 150 mMNaCl, 10 mM EDTA,
10 mMNa4P2O7, 2 mM sodium orthovanadate, 50 mM NaF, 1 mM phenylmethylsulfonyl
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fluoride, 10 μg/ml aprotinin, 10 μg/ml leupeptin, pH 7.4, and 1% (v/v) Triton X-100. Lysates
were clarified by centrifugation at 12,000g for 20 min at 4 C. The protein concentrations in the
cell lysates were measured using a Bio-Rad DC (detergent compatible) assay. As already
described [25,30], the same amount (50/80 μg of protein/lane) of proteins were denatured by
boiling in Laemmli sample buffer containing 10% 2-mercaptoethanol. Proteins were separated
by SDS-polyacrylamide gel electrophoresis and blotted on Immobilon-P membranes (Milli-
pore, Billerica, MA, USA). Membranes were blocked for 1 h in TBS tween (10 mM Tris-HCl,
pH 7.4, and 140 mMNaCl) containing 3% (w/v) bovine serum albumin and then incubated
with the indicated antibodies.

Detection of blotted proteins was performed by ECL according to the manufacturer's
instruction. Densitometric analysis was performed using Image Lab software 3.0 (Bio-Rad,
Hercules, CA, USA). To evaluate insulin response, cells were serum starved for 24 h in media
containing 0.25% BSA, with or without 1 nM BPA and then stimulated with 100 nM of insulin
for 10 min.

2.5. Oil Red O staining
To measure cellular neutral lipid droplet accumulation, 3T3-L1 mature adipocytes were
washed three times with iced phosphate-buffered saline (PBS) and fixed with 4% paraformal-
dehyde for 30 minutes. After fixation, cells were washed three times and stained with Oil Red
O (ORO) solution (working solution 0.5 g ORO power dissolved in 60% ethanol) for 15 min-
utes at room temperature. Cells were washed again three times with PBS to remove unbound
staining. 3T3-L1 mature adipocytes were examined under a light microscope and the red oil
droplets stained in the cells indicate lipid accumulation. Two different microscopic fields

Table 1. Primer sequences used in Real-time RT-PCR analysis.

Primers Sequences

C/EBPα Forward 5’ – TGGACAAGAACAGCAACG – 3’

Reverse 5’ – GTCAACTCCAGCACCTTC – 3’

FABP4/AP2 Forward 5’ – AATCACCGCAGACGACAG – 3’

Reverse 5’ – ACGCCTTTCATAACACATTCC – 3’

PPARγ Forward 5’ – TGGTGCCTTCGCTGATGC – 3’

Reverse 5’ – CTGTGGTAAAGGGCTTGATGGCT – 3’

GLUT-4 Forward 5’ – TGCTCTCCGGTTCCGTGGGT – 3’

Reverse 5’ – GGTTCCCCATCGTCAGAGCCG – 3’

GLUT-1 Forward 5’ – GGGAATGTCCTCATCTTGGA – 3’

Reverse 5’ – TGAGGCTCTGTGTGGTTCTG – 3’

IL6 Forward 5’ – GGAGTGGCTAAGGACCAAGAC – 3’

Reverse 5’ – GCATAACGCACTAGGTTTGCC – 3’

INFγ Forward 5’ – GCTTTGCAGCTCTTCCTCAT – 3’

Reverse 5’ – GTCACCATCCTTTTGCCAGT – 3’

Leptin Forward 5’ – ACATTTCACACACGCAGTCG – 3’

Reverse 5’ – GCATAACGCACTAGGTTTGCC – 3’

Adiponectin Forward 5’ – GACGACACCAAAAGGGCTCA – 3’

Reverse 5’ – GAGTGCCATCTCTGCCATCA – 3’

TNFα Forward 5’ – AGCCCCCAGTCTGTATCCTT – 3’

Reverse 5’ – CTCCCTTTGCAGAACTCAGG – 3’

β-actin Forward 5’ – GGTGGGAATGGGTCAGAAGG – 3’

Reverse 5’ – GTTGGCCTTAGGGTTCAGGG – 3’

doi:10.1371/journal.pone.0150762.t001
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(10X and 20X magnifications) per culture were photographed. The red oil droplets stained in
the cells were extracted in 100% isopropanol. The absorbance was evaluated at 510nm as previ-
ously described [31].

2.6. Glucose utilization
For glucose utilization studies, the method previously described [32] was modified for 3T3-L1
adipocytes. Mature adipocytes were incubated for 24h in serum-free media containing 0.25%
BSA, with or without 1 nM of BPA and stimulated with 100 nM of insulin. Glucose concentra-
tion was measured in the medium before and after the incubation. The difference in glucose
concentration was considered to be utilized by the cells. Quantitative analysis of glucose con-
centration was performed with ABX Pentra 400 clinical chemistry analyzer using the reagent
ABX Pentra Glucose CP (ABX-Horiba, Montpellier, France), according to the manufacturer’s
instructions.

2.7. Statistical analysis
Data were analyzed with Statview software (Abacus concepts) by one-factor analysis of variance.
Statistical analysis was conducted using Student's t-test for unpaired samples. P values of less
than 0.05 were considered statistically significant. All values were expressed as means ± SD.

3. Results

3.1. BPA enhanced cell growth and expression of adipogenic and
inflammatory markers
3T3-L1 mouse fibroblasts were grown in the absence or in the presence of BPA 1nM for three
weeks before adipogenesis started. No relevant morphological abnormalities in 3T3-L1 pre-
adipocytes were observed following BPA exposure. Interestingly, no significant difference
in cell growth was observed up to day 15 (the end of the second week of treatment) in BPA
treated cells compared to control cells. Thereafter, cells cultured with BPA showed a significant
increase in number compared to untreated adipocytes (p<0.01) (Fig 1A), confirming its
chronic effect on cell replication.

To evaluate BPA effects on adipocyte differentiation, mRNA and protein levels of the main
adipogenic markers were assayed in BPA-treated and untreated 3T3-L1 cells. Following BPA
exposure, both PPARγ and FABP4/AP2 mRNAs were significantly increased at day 8 from the
start of the differentiation process, when compared to untreated cells (p<0.05) (Fig 1B and
1C). Notably, C/EBPαmRNA levels were increased significantly both at day 0 and day 4 of adi-
pogenesis in differentiating 3T3-L1 cells treated with BPA compared to control cells (p<0.001
and p<0.05, respectively) (Fig 1D). We did not report C/EBPαmRNA levels at day 8 (the end
of differentiation process), because it reaches a plateau after inducing the expression of PPARγ
[33]. Moreover, BPA did not significantly affect Glucose Transporter 1 (GLUT-1) and GLUT-
4 mRNA levels (data not shown).

Similarly, in cells chronically incubated with BPA, PPARγ protein levels increased signifi-
cantly both at day 4 and day 8 of adipogenesis (p<0.05) (Fig 2A), while FABP4/AP2 only at
day 8 (p<0.05) (Fig 2B). Again, GLUT-4 protein abundance did not significantly change (Fig
2C). Interestingly, however, PPARγ protein abundance was already high at earlier days (data
not shown).

Next, we have investigated whether BPA may regulate adipocyte expression of adipokines
and inflammatory factors. At the end of adipogenesis (day 8) Leptin (Fig 3A), IL6 (Fig 3B) and
IFNγ (Fig 3C) mRNA levels displayed slight but significant increases upon BPA exposure
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Fig 1. Effect of BPA on 3T3-L1 proliferation andmRNA gene expression. (A) 3T3-L1 pre-adipocyte were counted and expressed as cells/ml, at days 15,
16, 17 and 18, after 2 weeks of incubation with (BPA) or without (CTR) BPA 1nM, before adipogenesis started. PPARγ (B), FABP4/AP2 (C) and cEBPα (D)
mRNA levels were assayed during adipogenesis at days 0, 4 and 8, by Real-time RT-PCR analysis, expressed as Relative Expression Unit (REU). Bars
represent the mean ± SD of four independent experiments. Asterisks indicate statistically significant differences (*p<0.05; **p<0.01; ***p<0.001) at days 4
and 8 compared to untreated day 0 for PPARγ (B), at day 8 compared to untreated day 4 for FABP4/AP2 (C), and at day 0 and day 4 compared to untreated
day 0 for cEBPα (D), without or with BPA incubation. Hashes (# p< 0.05; ### p<0.001) express statistically significant differences between day 8 with or
without BPA incubation (B and C) and between day 0 and day 4 with or without BPA incubation (D).

doi:10.1371/journal.pone.0150762.g001
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Fig 2. Effect of BPA on 3T3-L1 protein abundance of master differentiation genes. Protein levels of PPARγ (A), FABP4/AP2 (B) and GLUT-4 (C) were
assayed during adipogenesis at days 4 and 8 by western blot analysis, expressed as Arbitrary Unit (AU). Bars represent the mean ± SD of four independent
experiments and blot is representative of four different experiments. Asterisks indicate statistically significant differences (*p<0.05) between days 4 and 8 for
PPARγ (A) and day 8 for FABP4/AP2 (B), without and with BPA incubation, both compared to untreated day 4. Hash (#p<0.05) expresses statistically
significant differences between days 4 and 8 for PPARγ (A) and day 8 for FABP4/AP2 (B), upon BPA incubation compared to controls. No significant
differences in GLUT-4 protein expression (C).

doi:10.1371/journal.pone.0150762.g002
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Fig 3. Pro-inflammatory effect in 3T3-L1mature adipocytes. In mature adipocytes, mRNA levels of Leptin (A), IL6 (B), IFNγ (C), TNFα (D) and
adiponectin (E)were assayed at day 8, the end of adipogenesis, by Real-time RT-PCR analysis, and expressed as Relative Expression Unit (REU). Bars
represent the mean ± SD of four independent experiments. Asterisk indicates statistically significant difference (*p<0.05) between adipocytes cultured upon
BPA treatment compared to controls.

doi:10.1371/journal.pone.0150762.g003
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(p<0.05), while no significant difference was observed in TNFα and adiponectin (adipoQ)
expression (Fig 3D and 3E) in mature adipocytes.

3.2. BPA affected lipid accumulation, glucose utilization and insulin
signalling
Fig 4A shows microphotographs of mature 3T3-L1 adipocytes stained with ORO. An increase
in lipid droplet accumulation was evident in cells cultured with low and chronic BPA doses
before and during adipogenesis process, compared to untreated cells. Data were confirmed by
lipid quantification, showing a significant increase in lipid content for adipocytes cultured in
presence of BPA (p<0.05) (Fig 4B), compared to control cells. Next, we have measured insulin
stimulated glucose utilization in differentiated 3T3-L1 cells. Interestingly, BPA exposure
caused significant>2-fold reduction of insulin-stimulated glucose utilization (p<0.001) (Fig
4C). To verify whether BPA may affect insulin signaling, we tested the ERK1/2 and PKB/AKT
phosphorylation in 3T3-L1 pre-adipocytes (day 0) and mature adipocytes (day 8), after 10 min
of insulin stimulation. In control cells, insulin exposure increased both ERK1/2 and PKB/AKT
phosphorylation by 1.5 fold. Although other reports have detected much more robust response
to insulin [34], the observed insulin-stimulated increases were statistically significant (p<0.05).
At variance, in the presence of BPA, insulin failed to induce any increase of ERK1/2 (Fig 5A
and 5B) and PKB/AKT (Fig 5C and 5D) phosphorylation. In particular, an inhibition of insulin
effect was detected both in undifferentiated (day 0) (Fig 5A and 5C) and differentiated (day 8)
(Fig 5B and 5D) 3T3-L1 cells. Interestingly, in BPA-treated cells, after insulin stimulation,
PKB/AKT phosphorylation was significantly lower than in untreated cells, both at day 0 and 8
(p<0.01 and p<0.001, respectively), while ERK1/2 phosphorylation only at day 8 (p<0.05).

4. Discussion
Mounting evidence strongly suggests that BPA may affect adipose tissue development and
function, supporting the “environmental obesogen hypothesis” [3,35]. In the current study, we
have observed that prolonged exposure to low doses of BPA affected adipocyte differentiation
program, by increasing pre-adipocyte growth and by altering master regulatory genes of adipo-
genesis. Indeed, a significant increase of PPARγ, FABP4/AP2 and C/EBPα expression was
detected. Interestingly, when differentiation program was carried out in the presence of BPA,
enhanced lipid accumulation in mature adipocytes was also observed. Moreover, mature adi-
pocytes obtained upon BPA treatment showed a significant increase in pro-inflammatory cyto-
kine expression (Leptin, IL6 and IFNγ), further supporting the BPA inflammatory effect that
may contribute in the alteration of insulin sensitivity in the adipose tissue. As already reported
in other in vitro studies [9,10], environmental exposure was mimicked by chronically treating
cells with 1nM BPA (corresponding to 0.23 ng/ml) before and during differentiation. This BPA
dose was chosen also based on dose-response experiments (not shown) indicating that lower
doses (0.1 nM) were ineffective while higher doses were cytotoxic. Moreover, Schönfelder et al.
and Padmanabhan V et al. [36,37] have reported a median BPA concentration in fetal and
maternal blood of 22 ng/ml, even higher than 0.23 ng/ml (1nM).

We are aware that the limit of this research can be related to the lack of evidence of BPA det-
rimental effects on human adipogenesis. However, 3T3-L1 cells are commonly used to test the
effects of several chemical compounds. Nevertheless, similar BPA interferences on insulin
action and inflammatory pathways have been evidenced in murine and in human adipocytes
[9,38–40].

Newsworthy, it has been recently postulated that metabolic diseases, including obesity and
diabetes, may originate from developmental defects, even occurring in fetal life, that can be
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Fig 4. BPA effect on cellular neutral lipid droplet accumulation and glucose utilization in 3T3-L1 mature adipocytes. The microphotographs were
obtained with an optical microscope in two original magnifications (10X and 20X), following ORO staining (A) in adipocytes upon BPA incubation compared
to control cells. Lipid quantification test (B) was expressed as optical density (OD). Insulin stimulated glucose utilization test, expressed as fold over basal,
was shown in differentiated 3T3-L1 cells incubated with 1 nM of BPA (C). Bars represent the mean ± SD of four independent experiments. Asterisks indicate
statistically significant differences (*p<0.05 and ***p<0.001) between adipocytes cultured upon BPA compared to controls.

doi:10.1371/journal.pone.0150762.g004

BPA, Adipogenesis and Adipocyte Function

PLOS ONE | DOI:10.1371/journal.pone.0150762 March 4, 2016 10 / 16



Fig 5. BPA effect on insulin transduction pathway. Insulin signaling was tested in 3T3-L1 pre-adipocytes, before differentiation started (day 0; A-C) and in
mature adipocytes (day 8;B-D). ERK1/2 (A-B) and PKB/AKT (C-D) phosphorylation after insulin stimulation were shown in untreated and BPA treated cells.
Bars represent the mean ± SD of four independent experiments and blot is representative of four different experiments. Asterisks indicate statistically
significant difference (*p<0.05, **p<0.01 and ***p<0.001) in adipocytes cultured upon BPA compared to controls.

doi:10.1371/journal.pone.0150762.g005
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worsened by later environmental challenges [18,19,41–46]. Indeed, considering that fetal life
is a critical window for the adipose tissue development, our data are in agreement with the
hypothesis that the early chronic exposure to low BPA doses could be responsible for alteration
in genes, involved in adipogenic commitment and adipocyte differentiation, with possible
adult-onset of metabolic alterations. Thus, BPA may both enhance the expansion of adipocyte
precursors and increase lipid content. Notably, hyperplastic obesity is related to the increased
recruitment of new precursor cells, with features of metabolic “healthy” obesity, while the
hypertrophic obesity is associated with abdominal obesity, ectopic fat accumulation, metabolic
syndrome and genetic predisposition to diabetes [2]. Apparently, the significant increase in
pre-adipocyte growth in presence of BPA may account for development of hyperplastic obesity.
However, upon BPA incubation, we observed an increased lipid accumulation, with hyper-pro-
duction of pro-inflammatory cytokines and generation of insulin resistant mature adipocytes.
All these findings are reminiscent of hypertrophic obesity phenotype. In this scenario we can
hypothesize that BPA, through a precocious interference, can increase both adipocyte number
and lipid content, since it is capable to affect pre-adipocytic cell growth and to alter timing
and expression of master genes involved in adipocyte differentiation and adipose tissue devel-
opment. Subsequently, BPA may generate metabolic dysfunctional 3T3-L1 adipocytes, with
insulin resistance, as indicated by down-regulation of insulin signalling and reduction of glu-
cose utilization. Finally, the pro-inflammatory action exerted by BPA may worsen insulin sen-
sitivity, as we have previously reported in human adipocytes acutely treated with low BPA
doses [9].

Our observations are in line with the enhanced effect of BPA on adipocyte differentiation,
which has been recently reported [5,37,38,47,48]. Indeed, in our experiments, BPA was added
to the culture media before differentiation started, to study its chronic effect and to better
mimic the impact of early environmental exposure on undifferentiated cells. Remarkably, at
the earlier time of pre-adipocytes commitment, the effects of BPA exposure at doses within the
range of those found in biological fluids are in agreement with the concept that the timing of
pollutant exposure is a key factor to develop dysfunctional adipose tissue [10,11].

Considering BPA widespread distribution and human timing of exposure (i.e. prenatal/
postnatal periods), in this paper we have reinforced the hypothesis that BPA, by acting during
developmental period, may build up dysfunctional adipose tissue, responsible for alteration in
programming the adult body weight and in predisposition to overweight and visceral obesity in
a sex- and diet-dependent manner. In this regard, BPA could be more deleterious in humans if
associated with a concomitant exposure to other environmental chemical compounds, result-
ing as a “cocktail effect” [6,49].

Interestingly, this study pointed the attention on PPARγ, FABP4/AP2 and C/EBPα, nuclear
receptors with a central role in regulating energy homeostasis and essential for the normal
physiological function of most mammalian cell types, tissues and organs. In particular, PPARγ
acts as major regulator for adipogenesis and lipid metabolism and it has been used as proxy
bio-marker for screening of environmental obesogens [49]. The mechanism by which BPA
affects these genes is still unknown and will be object of further researches, although genetic,
epigenetic and endocrine disruption mechanisms, with the possible involvement of oxidative
stress, mitochondrial dysfunction and cell signaling have been hypothesized [46,50,51].

It should also be noticed that fetal/neonatal and childhood liver has poor capacity to inacti-
vate BPA via conjugation, leading to relatively higher free BPA urine and plasma concentra-
tions in toddler compared to adults [14–16]. Interestingly, placenta is able to transfer BPA-
glucuronide that can be deconjugated in fetus, with subsequent higher BPA concentrations in
fetal amniotic fluid, higher fetal exposure and alteration in adipose tissue development. The
observation that in early childhood daily BPA intake is related to different non-dietary sources
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exposure, such as dermal sublingual and inhalational exposures, with increased free BPA levels
[40,52,53] could also be relevant.

However, adipose tissue turnover also occurs in adult life [22]. Therefore, the disrupting
effect of prolonged BPA exposure cannot be excluded even in adult adipose tissue.

In this context, our data strengthened the concept that BPA may alter genes involved in adi-
pogenesis, particularly during embryonic/fetal life when fat tissue develops and when commit-
ment of pre-adipocytes to the adipogenic lineage occurs. As consequence, alteration in adipose
tissue function, in insulin sensitivity and fat accumulation, may occur not only via well docu-
mented estrogen-mediated processes, but also through pathways that remain to be determined,
especially in humans.

Certainly, a proper development of adipose tissue and adipose tissue function are critical
factors for regulation of fat mass as well as for glucose homeostasis late in life.

In conclusion, this study has evidenced that when 3T3-L1 pre-adipocytes were chronically
cultured in presence of BPA, alterations in adipocyte differentiation occurred. BPA exposure
could contribute to hyperplastic and hypertrophic obesity, the first related to increased cell
number, the second to generation of impaired adipocytes, capable to accumulate more lipids,
to be less insulin sensitive and to secrete more pro-inflammatory cytokines.

Further studies are needed to investigate BPA effects on human adipose tissue and to better
define its role in human metabolic health, together with the mechanisms involved. In fact,
understanding BPA mechanisms responsible for impaired adipogenesis may offer novel ways
to promote public health and avoid metabolic consequences of obesity. In the mean time, to
reduce BPA environmental chronic exposure would be beneficial to protect vulnerable individ-
uals, such as pregnant women, infants and children and to prevent metabolic dysfunctions and
negative outcomes later in the offspring life.
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